Abstract

We have examined whether two recently isolated forms of tilapia ( Oreochromis mossambicus) prolactin exert similar effects on osmoregulatory physiology. The effects of salinity, hypophysectomy, and replacement therapy with tilapia prolactins on whole-animal transepithelial potential (TEP), gill Na +, K +-ATPase activity, and plasma ions were determined. When intact fish adapted to 25% seawater (SW) were transferred to different salinities, TEP reached a steady state after 10 hr; TEP increased with increasing salinity from fresh water (FW) to 75% SW but was stable from 75 to 125% SW. Plasma osmolality, [Na +], and [Cl −] of these fish 24 hr after salinity change showed that fish in 100 and 125% SW had greater osmotic perturbation than those transferred to lower salinities. Following a 5-day recovery period in 25% SW, hypophysectomized fish transferred to FW for 10 hr had significantly lower TEP and plasma ion levels than either sham-operated fish or intact fish under the same conditions. Injection of hypophysectomized fish with “small” prolactin (tPRL 177), “large” prolactin (tPRL 188), or a combination of both (0.5 μg/g body weight) 22 hr and again 20 min prior to transfer from 25% SW to FW, restored TEP and plasma ion levels to those of sham-operated fish. Neither prolactin affected the TEP or plasma ions of sham-operated (intact) fish. Hypophysectomized fish had lower gill Na +, K +-ATPase activity than sham-operated fish in FW, but prolactin injections as described above did not affect gill Na +, K +-ATPase activity in either hypophysectomized or sham-operated fish. Our results indicate that the two forms of prolactin are indistinguishable with regard to several aspects of tilapia osmoregulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call