Abstract

A new transdimensional Sequential Monte Carlo (SMC) algorithm called SMCVB is proposed. In an SMC approach, a weighted sample of particles is generated from a sequence of probability distributions which ‘converge’ to the target distribution of interest, in this case a Bayesian posterior distribution. The approach is based on the use of variational Bayes to propose new particles at each iteration of the SMCVB algorithm in order to target the posterior more efficiently. The variational-Bayes-generated proposals are not limited to a fixed dimension. This means that the weighted particle sets that arise can have varying dimensions thereby allowing us the option to also estimate an appropriate dimension for the model. This novel algorithm is outlined within the context of finite mixture model estimation. This provides a less computationally demanding alternative to using reversible jump Markov chain Monte Carlo kernels within an SMC approach. We illustrate these ideas in a simulated data analysis and in applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.