Abstract

The stratum corneum protects the body against external agents, such as metals, chemicals, and toxics. Although it is considered poorly permeable to them, comprising the major barrier to the permeation of such substances, it may become a relevant gate of entry for such molecules. Cerium (Ce) is a lanthanide that is widely used in catalytic, energy, biological and medicinal applications, owing to its intrinsic structural and unique redox properties. Cerium salts used to produce cerium oxide (CeO2) nanostructures can potentially come into contact with the skin and be absorbed following dermal exposure. The objective of this study was to investigate the percutaneous absorption of three inorganic Ce salts: cerium (III) chloride (CeCl3); cerium (III) nitrate (Ce(NO3)3) and ammonium cerium (IV) nitrate (Ce(NH4)2(NO3)6), which are commonly adopted for the synthesis of CeO2 using in vitro - ex vivo technique in Franz diffusion cells. The present work shows that Ce salts cannot permeate intact human skin, but they can penetrate significantly in the epidermis (up to 0.29 μg/cm2) and, to a lesser extent in dermis (up to 0.11 μg/cm2). Further studies are required to evaluate the potential effects of long-term exposure to Ce.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.