Abstract

Transcutaneous immunization (TCI) has the advantages of safety, high efficiency, non-invasiveness and convenient use. The key for a TCI system is transdermal targeted delivery of antigen to dendritic cells (DCs), the most powerful antigen presenting cells. DCs also play an important role in tumor immunotherapy, which provides a huge imagination for the application of TCI to tumor treatment. In this study, a transcutaneous tumor vaccine (TTV) delivery system was developed using the electrospun silk fibroin (SF) and polyvinyl alcohol (PVA) composite nanofibrous patch loaded with mannosylated polyethyleneimine (PEIman)-modified ethosome (Eth) (termed Eth-PEIman). Eth-PEIman showed a good performance in targeting DCs, and the carriers loaded with antigen (encapsulated in Eths) and adjuvant (absorbed in PEIman) were observed effectively induce DCs maturation in vitro. With the tyrosinase-related protein-2 (TRP2) peptide as antigen and oligodeoxynucleotides containing unmethylated CpG motifs as adjuvant, the TTV-loaded patches (TTVP) significantly inhibited the growth of melanoma in a syngeneic mouse model for melanoma by subcutaneous injection of B16F10 cell lines. Moreover, the combined application of the TTVP and anti-programmed death-1 monoclonal antibody (aPD-1) produced a synergistic antitumor effect, which could be related to the infiltration of more CD4+ and CD8+ T cells in the tumor tissues. The application of TTVP also increased the expression of IL-12, which may be part of the mechanism of synergistic antitumor effect between the TTVP and aPD-1. These results suggest that the combination of the TTVP and immune checkpoint blockers could be an effective strategy for tumor treatment. Statement of significanceTranscutaneous immunization has the advantages of safety, high efficiency, non-invasiveness and convenient use. In this study, a novel transcutaneous tumor vaccine patch (TTVP) was developed using tumor antigens-loaded ethosomes that can target dendritic cells percutaneously. Our data demonstrated that the TTVP can significantly inhibit tumor growth. Furthermore, the combination of TTVP and aPD-1 produced a synergistic anti-melanoma effect. Considering its convenience and non-invasiveness, this TTVP system could find good application prospects in immunotherapy. The combination of TTVP and aPD-1 could be a useful strategy for the prevention and treatment of tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call