Abstract

It has been found that transcrystallinity of polypropylene (PP) develops easily on the polytetrafluoroethylene (PTFE) fiber surface in spite of the low surface energy of the fiber. Effect of the transcrystallinity on the interfacial strength has been extensively investigated using a single-fiber pull-out test. By controlling the crystallization temperature, range 25-130°C, the thickness of the transcrystalline layer varied from 0 to 175 μm for thick specimens, ca. 1 mm thick. Measurements of the adhesive fracture energy, the interfacial shear strength and the frictional stress were carried out for specimens with different embedded fiber lengths. Results show that interfacial strength and fracture energy are independent of the transcrystalline thickness. The calculated value of interfacial shear strength is 3.6 MPa, and the fracture energy for debonding is 2.1 J/m 2 . The presence of transcrystallinity does not promote the level of adhesion in PTFE/PP composites. However, the frictional stresses at the debonded fiber/matrix interface increase with transcrystalline thickness. It is attributed to the residual stresses which arise from shrinkage when specimens are cooled from crystallization temperature to room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.