Abstract

To evaluate the transcrystalline effects caused by various fibers, which were untreated, or treated with sodium hydroxide and cellulase, isothermal crystallization was performed. It was observed that the untreated and cellulase-treated cellulose fibers (cellulose I) had a nucleating ability to transcrystallize at PP matrix. Especially, cellulose fibers treated with Sodium hydroxide (cellulose II) transcystallized at PP matrix. This result was different from other's. Cellulose fibers also transcrystallized at PP/MAH-PP matrix irrespective of the type of cellulose crystalline structure. In PP/MAH-PP/CELL system, MAH-PP was located around the fiber surface at initial crystallization time, but was gradually expelled from that with the increase of crystallization time, and existed at outer boundaries of transcrstalline region at the final crystallization time. These phenomena were confirmed by IR-IRS spectra. The tensile strength of PP/CELL and PP/MAH-PP/CELL composites decreased with the increase of isothermal crystallization time. Therefore, it is thought that transcrystallinity gives rise to negative effect of tensile strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.