Abstract

A glass with a composition of 22.5SrO–22.5BaO–15Nb2O5–40SiO2 (mol %) was prepared by a melt-quenching method and then heat-treated at 950 °C for different crystallization time. Microstructure observations were carried out using scanning electron microscope and dielectric properties were measured by a LCR meter. The experimental results show that volume fraction of the crystalline phase increased, dielectric constant maximum enhanced, and Curie temperature shifted as the crystallization time is prolonged. The decrease in the Curie temperature for the sample crystallized at 950 °C for 1 h is considered to be caused by the clamping effect from the glass matrix or small compositional fluctuation. Impedance spectroscopy has been employed to study the polarization contributions arising from the glass and crystalline phases in the glass–ceramics for different crystallization time. With the increase in crystallization time, the magnitudes of impedance and modulus as well as the relaxation frequency changed significantly. The activation energy calculated from the relaxation frequency increased for the glass phase due to a denser network structure, while the crystalline phase showed a slight decrease implying there is no change in its polarization mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call