Abstract
Heat stress (HS) triggers various pathophysiological responses in the brain, including neuroinflammation and cognitive impairments. The objective of this study was to examine the impact of HS by comparing the hippocampal transcriptomes of mice exposed to HS with those under control conditions. Our analysis revealed that HS exposure did not affect the number of SNP or InDel mutations in the mouse hippocampus, nor did it influence SNP functions, distribution, or types. However, HS did lead to differential gene expression in the hippocampus, with 210 differentially expressed genes (DEGs), including 72 upregulated and 138 downregulated genes. Gene Ontology (GO) analysis indicated that these DEGs are involved in hippocampal responses to various stimuli (chemical, oxygen-containing compounds, peptide hormones), metabolic processes (arachidonic acid, olefinic compound metabolism, lipid metabolism), and other functions. The regulation of these functions may be closely linked to specific DEGs, such as Card14, Ntrk1, Lcn2, Irs4, Cyp2c70, Hamp, Ambp, Gh, Mup19, and others, which exhibit the highest degree of differential variation. Furthermore, we observed that pre-treatment with taurine primarily modulated cognitive functions in the hippocampus following HS. Therefore, our study offers valuable insights for future research on heat stress-induced cognitive impairments and provides a theoretical foundation for developing taurine-based preventive strategies for high-risk populations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have