Abstract
Simple SummaryWith the increased global temperature, the threat from climate change has already affected the livestock industry. Exposure to heat stress is a major factor responsible for impacts on the overall livestock production, which ultimately results in economic losses. With no exception, poultry is among the most vulnerable livestock to environmental stress. Hence, a comprehensive study is required to understand the molecular mechanisms and to improve the breeding program to overcome economic losses. Therefore, we investigated growth related phenotypes and performed transcriptome analysis to understand the heat stress response in chickens. Animal experiments were designed with two groups, which were kept at 21 and 33 °C for 2 weeks as the control and treatment groups. The transcriptome analysis used blood samples from each chicken. In this study, we identified a total of 245 differentially expressed genes (DEGs) with important roles in various biological processes, such as cell protection, energy conversion in the mitochondria, and protein quality control. The results indicate that the heat stress environment regulates genes and alter the metabolism to adjust for the heat environment in chickens. These findings could be useful to help understand the heat stress response in poultry.Chicken is important livestock that serves as a vital food source which remain largely affected by heat stress. Therefore, we performed the transcriptome analysis to help understand the mechanisms of heat stress response in chickens. In the animal experiments, we grouped them into a normal and severe at 21 and 33 °C, with identified physiologic parameters for 2-weeks. Subsequently, RNA-seq analysis was performed to identify DEGs with a false discovery rate < 0.05 and a fold change ≥ 1.5. In the physiological parameters, we observed average daily gain was declined, rectal temperature and respiration rate was increased in severe group. Among total 245 DEGs, 230 and 15 genes were upregulated and downregulated, respectively. In upregulated DEGs, HSPs, MYLK2, and BDKRB1 genes were identified as key genes in heat stress. The KEGG pathway analysis showed involvement in the ATP metabolic process, MAPK signaling pathway and calcium signaling pathway with related protein processing and synthesis. In conclusion, with induced heat stress, such changes in physiologic parameters alter the neuroendocrine system, and we observed that the heat stress environment regulates such Heat shock protein genes to protect the cells and proteins from an altered metabolism. These findings provide a more comprehensive understanding of the heat stress response in poultry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.