Abstract

Clonostachys rosea is an important mycoparasitism biocontrol agent that exhibits excellent control efficacy against numerous fungal plant pathogens. Transcriptomic sequencing may be used to preliminarily screen mycoparasitism-related genes of C. rosea against fungal pathogens. The present study sequenced and analyzed the transcriptome of C. rosea mycoparasitizing a Basidiomycota (phylum) fungal pathogen, Rhizoctonia solani, under three touch stages: the pre-touch stage, touch stage and after-touch stage. The results showed that a number of genes were differentially expressed during C. rosea mycoparasitization of R. solani. At the pre-touch stage, 154 and 315 genes were up- and down-regulated, respectively. At the touch stage, the numbers of up- and down-regulated differentially expressed genes (DEGs) were 163 and 188, respectively. The after-touch stage obtained the highest number of DEGs, with 412 and 326 DEGs being up- and down-regulated, respectively. Among these DEGs, ABC transporter-, glucanase- and chitinase-encoding genes were selected as potential mycoparasitic genes according to a phylogenetic analysis. A comparative transcriptomic analysis between C. rosea mycoparasitizing R. solani and Sclerotinia sclerotiorum showed that several DEGs, including the tartrate transporter, SDR family oxidoreductase, metallophosphoesterase, gluconate 5-dehydrogenase and pyruvate carboxylase, were uniquely expressed in C. rosea mycoparasitizing R. solani. These results significantly expand our knowledge of mycoparasitism-related genes in C. rosea and elucidate the mycoparasitism mechanism of C. rosea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call