Abstract

To explore the differences in transcriptional levels between mutant strains of csn2 gene of CRISPR-Cas9 system of Streptococcus mutans( S. mutans) and wild-type strains. The S. mutans UA159, csn2-gene-deleted strains (Δ csn2) and csn2-gene-covering strains (Δ csn2/pDL278- csn2) of S. mutans were cultivated. Total RNA was extracted, and high-throughput sequencing technology was used for transcriptome sequencing. Based on the GO analysis and the KEGG analysis of the differentially expressed genes, the biological processes involved were thoroughly examined. The qRT-PCR method was used to verify the transcriptome sequencing results. The transcriptome results showed that, compared with UA159, there were 176 genes in Δ csn2 whose gene expression changed more than one fold ( P<0.05), of which 72 were up-regulated and 104 were down-regulated. The GO enrichment analysis and the KEGG enrichment analysis revealed that both the up-regulated and down-regulated differentially expressed genes (DEG) were involved in amino acid transport and metabolism. In addition, the biological processes that up-regulated DEGs participated in were mainly related to carbohydrate metabolism, energy production and conversion, and transcription; down-regulated DEGs were mainly related to lipid metabolism, DNA replication, recombination and repair, signal transduction mechanisms, nucleotide transport and metabolism. The functions of some DEGs were still unclear. Results of qRT-PCR verified that the expressions of leuA, leuC and leuD(genes related to the formation of branched-chain amino acids) were significantly down-regulated in Δ csn2 when compared with UA159 and Δ csn2/pDL278- csn2. Through transcriptome sequencing and qRT-PCR verification, it was found that the expression of genes related to branched-chain amino acid synthesis and cell membrane permeability in Δ csn2 changed significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.