Abstract

Methanotrophs capable of converting C1-based substrates play an important role in the global carbon cycle. As one of the essential macronutrient components in the medium, the uptake of nitrogen sources severely regulates the cell's metabolism. Although the feasibility of utilizing nitrogen gas (N2) by methanotrophs has been predicted, the mechanism remains unclear. Herein, the regulation of nitrogen fixation by an essential nitrogen-fixing regulator (NifA) was explored based on transcriptomic analyses of Methylomicrobium buryatense 5GB1. A deletion mutant of the nitrogen global regulator NifA was constructed, and the growth of M. buryatense 5GB1ΔnifA exhibited significant growth inhibition compared with wild-type strain after the depletion of nitrate source in the medium. Our transcriptome analyses elucidated that 22.0% of the genome was affected in expression by NifA in M. buryatense 5GB1. Besides genes associated with nitrogen assimilation such as nitrogenase structural genes, genes related to cofactor biosynthesis, electron transport, and post-transcriptional modification were significantly upregulated in the presence of NifA to enhance N2 fixation; other genes related to carbon metabolism, energy metabolism, membrane transport, and cell motility were strongly modulated by NifA to facilitate cell metabolisms. This study not only lays a comprehensive understanding of the physiological characteristics and nitrogen metabolism of methanotrophs, but also provides a potentially efficient strategy to achieve carbon and nitrogen co-utilization.Key points• N2 fixation ability of M. buryatense 5GB1 was demonstrated for the first time in experiments by regulating the supply of N2.• NifA positively regulates nif-related genes to facilitate the uptake of N2 in M. buryatense 5GB1.• NifA regulates a broad range of cellular functions beyond nif genes in M. buryatense 5GB1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call