Abstract
Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Although extensive research on WB has been conducted using transcriptomics, effectively screening and analyzing key target information remains a challenge. In this present study, 5 transcriptomic datasets obtained from the National Center for Biotechnology Information (NCBI) were used. A meta-analysis was conducted to identify meta-differentially expressed genes (meta-DEGs) involved in the response of broilers to WB myopathy. These meta-DEGs were further analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA), supplemented by protein-protein interaction (PPI) network construction to pinpoint hub genes. These analyses help to reveal key genes, pathways, and biological processes associated with WB myopathy. The results showed that 645 up-regulated and 99 down-regulated significant meta-DEGs (|log2FC| ≥0.6, P-Meta < 0.05, and present in at least 4 datasets) were identified. GO analysis showed that multiple fibrosis-related pathways/biological processes, such as cell adhesion, connective tissue development, and collagen-rich extracellular matrix, as well as calcium ion binding were significantly upregulated. PPI analysis identified TGFB3, COL1A1, COL1A2, and COL3A1 as central hub genes involved in the fibrotic processes. KEGG analysis revealed significant upregulation of apoptosis and lysosomal pathways, with an enrichment of Ca2+-related signals and lysosomal cathepsins within the apoptosis pathway. Additionally, GSEA indicated a suppression of the tricarboxylic acid (TCA) cycle and the mitochondrial electron transport chain (ETC) in WB myopathy, with PPI analysis also identifying specific hub genes associated with these pathways. In conclusion, our comprehensive analysis of meta-DEGs elucidated key biological processes and pathways implicated in WB myopathy, including fibrosis, apoptosis, altered calcium signaling, and metabolic disruption. The identification of specific hub genes offers avenues for further investigation into the pathogenesis of this condition, potentially guiding targeted therapeutic strategies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.