Abstract

Perfluoralkyl acids (PFAS) have been regarded as global pollutants for at least twenty years, with potentially negative physiological effects on multiple vertebrate species including humans. Here we analyze the effects of the administration of environmentally-relevant levels of PFAS on caged canaries (Serinus canaria) by using a combination of physiological, immunological, and transcriptomic analyses. This constitutes a completely new approach to understand the toxicity pathway of PFAS in birds. While we observed no effects on physiological and immunological parameters (e.g, body weight, fat index, cell-mediated immunity), the transcriptome of the pectoral fatty tissue showed changes compatible with the known effects of PFAS as obesogens in other vertebrates, particularly in mammals. First, transcripts related to the immunological response were affected (mainly enriched), including several key signaling pathways. Second, we found a repression of genes related to the peroxisome response and fatty acid metabolism. We interpret these results as indicative of the potential hazard of environmental concentrations of PFAS on the fat metabolism and the immunological system of birds, while exemplifying the ability of transcriptomic analyses of detecting early physiological responses to toxicants. As the potentially affected functions are essential for the survival of the animals during, for example, migration, our results underline the need for tight control of the exposure of natural populations of birds to these substances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call