Abstract
Maize is highly sensitive to waterlogging stress, and seeds fail to germinate under hypoxic conditions induced by submergence, leading to severe yield losses. We conducted a comparative transcriptome analysis during the initial stages of seed germination, exploring aerobic and hypoxic conditions in two inbred lines, B73 and Okcheon Chal-1. Notably, significant differences emerged between aerobic and hypoxic conditions on the first day of germination, particularly in genes associated with fermentation and phytohormone regulation. However, consistent transcriptomic changes were observed in primary metabolic pathways such as glycolysis, the TCA cycle, and the pentose phosphate pathway. These differences strongly correlate with each other, illustrating the efficacy of the hypoxic response for survival in water. Furthermore, this suggests that germinating seeds serve as a promising model for studying plant hypoxia responses with controlled environmental conditions. Insights from this study contribute to understanding the fundamental mechanisms of hypoxia response and hold promise for developing strategies to cultivate waterlogging-tolerant maize cultivars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.