Abstract

Incubation of the 2-nitroimidazole-aziridine, RSU-1069 [1-(2-nitro-1-imidazolyl)-3-(1-aziridinyl) -2-propanol], and its monomethylaziridine analogue, RSU-1131 [1-(2-nitro-1-imidazolyl)-3-(1-(2-methylaziridinyl))-2-propanol], with V79-4 mammalian cells for 2hr under aerobic or hypoxic conditions induces mutations as measured at the hypoxanthine phosphoribosyl transferase locus. The ability of these agents to induce mutations is increased by a factor of 12–14 under hypoxic conditions. The increased cytotoxicity of these agents under hypoxic conditions was confirmed following a 2 hr incubation period. Decreasing the glutathione (GSH) content of the cells with buthionine-( S, R)-sulphoximine to <1% of the control generally results in an increase in the cytotoxicity and mutagenicity of these agents under both aerobic and hypoxic conditions. Since these agents do not modify the cellular GSH levels, it is inferred that the thiols partially detoxify through removal of a reactive metabolite of the agents, under hypoxic conditions, or removal of known DNA adducts, and not through their interaction with the agents themselves. Under aerobic conditions, the formation of mutations is consistent with the established monofunctional action of these agents whereas under hypoxic conditions the bifunctional action predominates for mutation induction, based upon the large differential aerobic: hypoxic effect. From a comparison of the number of mutations per lethal event, the effect of thiol depletion is more pronounced for cytotoxicity than for mutation induction by these agents. In summary, these agents are considered to be weak mutagens towards V79-4 cells under aerobic conditions when compared with other DNA alkylating agents, although they are more potent under anoxic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call