Abstract
BackgroundMicrurus corallinus (coral snake) is a tropical forest snake belonging to the family Elapidae. Its venom shows a high neurotoxicity associated with pre- and post-synaptic toxins, causing diaphragm paralysis, which may result in death. In spite of a relatively small incidence of accidents, serum therapy is crucial for those bitten. However, the adequate production of antiserum is hampered by the difficulty in obtaining sufficient amounts of venom from a small snake with demanding breeding conditions. In order to elucidate the molecular basis of this venom and to uncover possible immunogens for an antiserum, we generated expressed sequences tags (ESTs) from its venom glands and analyzed the transcriptomic profile. In addition, their immunogenicity was tested using DNA immunization.ResultsA total of 1438 ESTs were generated and grouped into 611 clusters. Toxin transcripts represented 46% of the total ESTs. The two main toxin classes consisted of three-finger toxins (3FTx) (24%) and phospholipases A2 (PLA2s) (15%). However, 8 other classes of toxins were present, including C-type lectins, natriuretic peptide precursors and even high-molecular mass components such as metalloproteases and L-amino acid oxidases. Each class included an assortment of isoforms, some showing evidence of alternative splicing and domain deletions. Five antigenic candidates were selected (four 3FTx and one PLA2) and used for a preliminary study of DNA immunization. The immunological response showed that the sera from the immunized animals were able to recognize the recombinant antigens.ConclusionBesides an improvement in our knowledge of the composition of coral snake venoms, which are very poorly known when compared to Old World elapids, the expression profile suggests abundant and diversified components that may be used in future antiserum formulation. As recombinant production of venom antigens frequently fails due to complex disulfide arrangements, DNA immunization may be a viable alternative. In fact, the selected candidates provided an initial evidence of the feasibility of this approach, which is less costly and not dependent on the availability of the venom.
Highlights
IntroductionMicrurus corallinus (coral snake) is a tropical forest snake belonging to the family Elapidae
Micrurus corallinus is a tropical forest snake belonging to the family Elapidae
Transcriptomic analysis The expressed sequences tags (ESTs) databank of M. corallinus contains 1438 sequences grouped into 611 clusters using CAP3 software with 98% identity
Summary
Micrurus corallinus (coral snake) is a tropical forest snake belonging to the family Elapidae. The coral snake (genus Micrurus) is the most abundant, diverse and representative member of the family Elapidae in the New World It has a wide geographic distribution which covers the southwest United States, Central America, and southern Argentina [1]. In Brazil, cases of envenoming by coral snakes are caused mainly by Micrurus corallinus and Micrurus frontalis, species inhabiting in highly populated areas in the Central, South and Southeast regions. Many of their characteristics, such as ophiophagous diet, fossorial habit and living in tropical latitudes, make it difficult to obtain and keep them in captivity. While the incidence of accidents is small when compared to that for other genera, the wide geographic dispersion of Micrurus and the lethality of its bite require the serum to be distributed all over the country, raising its demand
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have