Abstract
BackgroundColor polymorphism, a high-valued trait, is frequently observed in molluscan shellfish. The QN Orange scallop, a new scallop strain successively selected from the interspecific hybrids of the bay scallop (Argopecten irradians irradians) and the Peruvian scallop (Argopecten purpuratus), is distinguished from other scallops by its orange adductor muscles. In this study, to reveal the mechanisms of the formation of adductor muscle coloration in the QN Orange scallops, we compared the proteome and transcriptome of orange adductor muscles of the QN Orange and those of white adductor muscles of the Bohai Red scallop, another strain selected from the interspecific hybrids of the bay scallop and the Peruvian scallop.ResultsTranscriptomic analysis revealed 416 differentially expressed genes (DEGs) between white and orange adductor muscles, among which 216 were upregulated and 200 were downregulated. Seventy-four differentially expressed proteins (DEPs), including 36 upregulated and 38 downregulated proteins, were identified through label-free proteomics. Among the identified DEGs and DEPs, genes related to carotenoids biosynthesis including apolipophorin, and Cytochrome P450 and those related to melanin biosynthesis including tyrosinase and Ras-related protein Rab-11A were found to express at higher levels in orange adductor muscles. The high expression levels of VPS (vacuolar protein sorting) and TIF (translation initiation factor) in orange adductor muscle tissues indicated that carotenoid accumulation may be affected by proteins outside of the carotenoid pathway.ConclusionsOur results implied that the coloration of orange adductor muscles in the QN Orange scallops may be controlled by genes modulating accumulation of carotenoids and melanins. This study may provide valuable information for understanding the mechanisms and pathways underlying adductor muscle coloration in molluscan shellfish.
Highlights
IntroductionA high-valued trait, is frequently observed in molluscan shellfish
Color polymorphism, a high-valued trait, is frequently observed in molluscan shellfish
Two carotenoid-related genes, apolipophorin and cytochrome P450 (CYP450), and one melanin-related gene, tyrosinase, were found to be differentially expressed in the white and orange adductor muscles, which were subsequently verified by RT polymerase chain reactions (PCR) analysis (Fig. 4)
Summary
A high-valued trait, is frequently observed in molluscan shellfish. The QN Orange scallop, a new scallop strain successively selected from the interspecific hybrids of the bay scallop (Argopecten irradians irradians) and the Peruvian scallop (Argopecten purpuratus), is distinguished from other scallops by its orange adductor muscles. A high-valued trait that appeals to consumers, is common in molluscan shellfish [1], and more variations in color are observed in shell color than in softbody color. Existing evidence suggests that orange coloration in some mollusks is the result of carotenoid accumulation in these animals [8], presence of melanins leads to orange coloration in other animals [10, 11].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have