Abstract

Little information is available on innate immune defense mechanisms of Scapharca subcrenata. C-type lectins (CTLs) are not only pattern recognition proteins that can bind pathogen-associated molecular patterns, but also crucial maternally-derived immune factors in mollusc egg. In this study, the comparative transcriptome analysis of Vibrio parahaemolyticus-infected and untreated hepatopancreas were performed to identify the key genes involved in maternal transfer of immunity. A total of 3514 and 9327 differentially expressed genes (DEGs) were identified at 6 and 48 h post challenge compared to control groups. Gene Ontology and Cluster of Orthologous Groups analysis showed that most DEGs were classified under regulation of signal transduction, regulation of the metabolic process of carbohydrates and secondary metabolites, while the processes of posttranscriptional modification and protein translation were inhibited manifestly. The DEGs were most enriched in pathways related to lysosome, phagosome and EMC-receptor interaction. Among the DEGs, 191 maternal immune-related genes that could provide developing embryos a better protection against pathogen infection were identified according to previous studies. Additionally, five CTLs (designated as SsCTL1-5) identified from the DEGs were cloned, and their expression patterns in different tissues and post immune stimulation were analyzed. These findings would be beneficial for understanding the innate immune defense mechanisms of S. subcrenata.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call