Abstract
BackgroundPinus koraiensis is an evergreen tree species with strong cold resistance. However, the transcriptomic patterns in response to cold stress are poorly understood for P. koraiensis. In this study, global transcriptome profiles were generated for P. koraiensis under cold stress (− 20 °C) over time by high-throughput sequencing.ResultsMore than 763 million clean reads were produced, which assembled into a nonredundant data set of 123,445 unigenes. Among them, 38,905 unigenes had homology with known genes, 18,239 were assigned to 54 gene ontology (GO) categories and 18,909 were assigned to 25 clusters of orthologous groups (COG) categories. Comparison of transcriptomes of P. koraiensis seedlings grown at room temperature (20 °C) and low temperature (− 20 °C) revealed 9842 differential expressed genes (DEGs) in the 6 h sample, 9250 in the 24 h sample, and 9697 in the 48 h sample. The number of DEGs in the pairwise comparisons of 6 h, 24 h and 48 h was relatively small. The accuracy of the RNA-seq was validated by analyzing the expression patterns of 12 DEGs by quantitative real-time PCR (qRT-PCR). In this study, 34 DEGs (22 upregulated and 12 downregulated) were involved in the perception and transmission of cold signals, 96 DEGs (41 upregulated and 55 downregulated) encoding 8 transcription factors that regulated cold-related genes expression, and 27 DEGs (17 upregulated and 10 downregulated) were involved in antioxidant mechanisms in response to cold stress. Among them, the expression levels of c63631_g1 (annexin D1), c65620_g1 (alpha-amylase isozyme 3C), c61970_g1 (calcium-binding protein KIC), c51736_g1 (ABA), c58408_g1 (DREB3), c66599_g1 (DREB3), c67548_g2 (SOD), c55044_g1 (CAT), c71938_g2 (CAT) and c11358_g1 (GPX) first increased significantly and then decreased significantly with the extension of stress time.ConclusionsA large number of DEGs were identified in P. koraiensis under cold stress, especially the DEGs involved in the perception and transmission of cold signals, the DEGs encoding TFs related to cold regulation and the DEGs removing ROS in antioxidation mechanisms. The transcriptome and digital expression profiling of P. koraiensis could facilitate the understanding of the molecular control mechanism related to cold responses and provide the basis for the molecular breeding of conifers.
Highlights
IntroductionThe transcriptomic patterns in response to cold stress are poorly understood for P. koraiensis
Pinus koraiensis is an evergreen tree species with strong cold resistance
484, 371 and 543 gene ontology (GO) terms were significantly enriched after and ‘protein serine/threonine kinase activity’, which suggested that the relevant enzyme activities and products might change under cold stress. These results showed a complex regulatory cold stress response and indicated that the changes in the biological process might be very important in response to cold stress in P. koraiensis
Summary
The transcriptomic patterns in response to cold stress are poorly understood for P. koraiensis. Global transcriptome profiles were generated for P. koraiensis under cold stress (− 20 °C) over time by high-throughput sequencing. The duration of stress is a test of plant cold tolerance, which involves various cellular response. ICE1 (Inducer of CBF Expression 1), is located upstream of CBF, and together, they jointly regulate the expression of a spectrum of cold-regulated (COR) genes, through CBF binding to the cis-acting element (CRT/DRE) that contains a core conserved sequence of CCGAC [6, 7]. The CBF-COR pathway constitutes the predominant cold signaling pathway in plants, and the CBF gene is regulated positively by ICE1 (Inducer of CBF Expression 1). HOS1 (High Expression of Osmotically Responsive Gene 1) and MYB15 (myeloblastosis 15) negatively regulate the CBF genes, which provides a more complete understanding of the complexity of CBF-mediated cold signaling [8,9,10]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have