Abstract

Goji fruit fly, Neoceratitis asiatica, is a major pest on the well-known medicinal plant Lycium barbarum. Dissecting molecular mechanisms of infestation and host selection of N. asiatica will contribute to the determination of best management practices for pest fly control. Gene expression normalization by Real-time quantitative PCR (qPCR) requires the selection and validation of appropriate reference genes (RGs). Hence, 15 candidate RGs were selected from transcriptome data of N. asiatica. Their expression stability was evaluated with five algorithms (∆Ct, Normfinder, GeNorm, BestKeeper, and RefFinder) for sample types differing in the developmental stage, sex, tissue type, and in response to five different abiotic stresses. Our results indicated that the RGs β-Actin + GST for sex, RPL32 + EF1α for tissue type, RPS13+ EF1α for developmental stages along with odor stimulation, color induction, and starvation-refeeding stresses, EF1α + GAPDH under insecticide stress, RPS13 + RPS18 under temperature stress, respectively, were selected as the most suitable RGs for qPCR normalization. Overall, RPS18 and EF1α were the two most stable RGs in all conditions, while RPS15 and EF1β were the least stable RGs. The corresponding suitable RGs and one unstable RG were used to normalize a target odorant-binding protein OBP56a gene in male and female antennae, different tissues, and under odor stimulation. The results of OBP56a expression were consistent with transcriptome data. Our study is the first research on the most stable RGs selection in N. asiatica, which will facilitate further studies on the mechanisms of host selection and insecticide resistance in N. asiatica.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call