Abstract

The RNA exosome complex functions in both the accurate processing and rapid degradation of many classes of RNA. Functional and structural analyses indicate that RNA can either be threaded through the central channel of the exosome or more directly access the active sites of the ribonucleases Rrp44 and Rrp6, but it was unclear how many substrates follow each pathway in vivo. We used CRAC (UV crosslinking and analysis of cDNA) in growing cells to identify transcriptome-wide interactions of RNAs with the major nuclear exosome-cofactor Mtr4 and with individual exosome subunits (Rrp6, Csl4, Rrp41 and Rrp44) along the threaded RNA path. We compared exosome complexes lacking Rrp44 exonuclease activity, carrying a mutation in the Rrp44 S1 RNA-binding domain predicted to disfavor direct access, or with multiple mutations in Rrp41 reported to impede RNA access to the central channel in vitro. Preferential use of channel-threading was seen for mRNAs, 5S rRNA, scR1 (SRP) and aborted tRNAs transcripts. Conversely, pre-tRNAs preferentially accessed Rrp44 directly. Both routes participated in degradation and maturation of RNAPI transcripts, with hand-over during processing. Rrp41 mutations blocked substrate passage through the channel to Rrp44 only for cytoplasmic mRNAs, supporting the predicted widening of the lumen in the Rrp6-associated, nuclear complex. Many exosome substrates exhibited clear preferences for a specific path to Rrp44. Other targets showed redundancy, possibly allowing the efficient handling of highly diverse RNA-protein complexes and RNA structures. Both threading and direct access routes involve the RNA helicase Mtr4. mRNAs that are predominately nuclear or cytoplasmic exosome substrates can be distinguished in vivo.

Highlights

  • In Eukaryotes, the exosome is the major RNA degradation complex responsible for quality control of most transcripts in both the nucleus and cytoplasm, processing of stable RNA precursors and turnover of pre-mRNAs, mRNAs and large numbers of non-coding RNAs

  • UV crosslinking and analysis of cDNA (CRAC) was performed in actively growing cells as described [32, 33] on Rrp44-HTP, carrying a C-terminal, His6-TEV-Protein A tandem affinity purification tag, and on constructs carrying point mutations to inactivate the exonuclease catalytic site (Rrp44-exo; D551N) and disrupt RNA binding by the S1 domain (Rrp44-S1; G916E) as previously reported [6] [14]

  • More marked impairment was seen in the Rrp44-exo and Rrp44-exo-S1 strains, cultures used for crosslinking and analysis of cDNAs (CRAC) analyses showed robust growth (S1A Fig)

Read more

Summary

Introduction

In Eukaryotes, the exosome is the major RNA degradation complex responsible for quality control of most transcripts in both the nucleus and cytoplasm, processing of stable RNA precursors and turnover of pre-mRNAs, mRNAs and large numbers of non-coding RNAs (ncRNAs). A puzzling aspect of exosome substrate targeting is the basis of the distinction between precise 3’ processing of stable RNA species and the rapid, complete degradation of “constitutive” degradation substrates or aberrant RNAs and RNA-protein complexes (reviewed in [1]). Processing targets include precursors to the 5.8S rRNA, small nucleolar RNAs (snoRNAs) and small nuclear RNAs (snRNAs). Constitutive nuclear exosome targets include pre-rRNA spacer regions and several hundred different non-protein coding RNAs (ncRNAs). Constitutive cytoplasmic targets are the ~6,000 mRNA species. Aberrant RNAs apparently arise from all classes of transcription unit, including pre-rRNAs, pre-tRNAs, premRNAs and the precursors to many other stable RNA species

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call