Abstract

ObjectiveTo identify key genes in ovarian cancer using transcriptome sequencing in two cell lines: MCV152 (benign ovarian epithelial tumour) and SKOV-3 (ovarian serous carcinoma).MethodsDifferentially expressed genes (DEGs) between SKOV-3 and MCV152 were identified. Candidate genes were assessed for enrichment in gene ontology function and Kyoto Encyclopaedia of Genes and Genomes pathway. Candidate gene expression in SKOV-3 and MCV152 cells was validated using Western blots.ResultsA total of 2020 upregulated and 1673 downregulated DEGs between SKOV3 and MCV152 cells were identified that were significantly enriched in the cell adhesion function. Upregulated DEGs, such as angiopoietin 2 (ANGPT2), CD19 molecule (CD19), collagen type IV alpha 3 chain (COL4A3), fibroblast growth factor 18 (FGF18), integrin subunit beta 4 (ITGB4), integrin subunit beta 8 (ITGB8), laminin subunit alpha 3 (LAMA3), laminin subunit gamma 2 (LAMC2), protein phosphatase 2 regulatory subunit Bgamma (PPP2R2C) and spleen associated tyrosine kinase (SYK) were significantly involved in the extracellular matrix-receptor interaction pathway. Downregulated DEGs, such as AKT serine/threonine kinase 3 (AKT3), collagen type VI alpha 1 chain (COL6A1), colony stimulating factor 3 (CSF3), fibroblast growth factor 1 (FGF1), integrin subunit alpha 2 (ITGA2), integrin subunit alpha 11 (ITGA11), MYB proto-oncogene, transcription factor (MYB), phosphoenolpyruvate carboxykinase 2, mitochondrial (PCK2), placental growth factor (PGF), phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), serum/glucocorticoid regulated kinase 1 (SGK1), toll like receptor 4 (TLR4) and tumour protein p53 (TP53) were involved in PI3K-Akt signalling. Expression of these DEGs was confirmed by Western blot analyses.ConclusionCandidate genes enriched in cell adhesion, extracellular matrix–receptor interaction and PI3K-Akt signalling pathways were identified that may be closely associated with ovarian cancer invasion and potential targets for ovarian cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call