Abstract
The endometrial basal layer is essential for endometrial regeneration, whose disruption leads to thin endometrium or intrauterine adhesion (IUA) with an unsatisfactory prognosis. Emerging data indicate that platelet-rich plasma (PRP) can promote endometrial proliferation, but the mechanism by which PRP regulates endometrial regeneration remains unclear. Herein, we investigated the therapeutic effects and possible mechanisms of PRP on endometrial regeneration. IUA animal model was generated by sham, mechanically damaging endometrium with or without PRP for 10days. The uterine section in the model group showed degenerative changes with a narrow endometrial lumen, atrophic columnar epithelium, decreased number of endometrial glands, decreased endometrial thickness, and increased collagen deposition. The above disruption could be ameliorated by the PRP. Transcriptome sequencing analysis displayed that the retinol metabolism pathway and extracellular matrix (ECM) receptor interaction pathway were up-regulated and enriched in differential expression genes (DEGs). Melanotransferrin (MELTF) was the key up-regulated gene in PRP-induced endometrial regeneration, which was verified in vivo and in vitro. Ferroptosis, autophagy, and pyroptosis were down-regulated in PRP-treated Ishikawa cells. Conclusively, PRP promotes endometrium regeneration by up-regulating the retinol metabolism and ECM receptor interaction pathway with MELTF. Meanwhile, PRP could also inhibit endometrial epithelial cell death by regulating ferroptosis, autophagy, and pyroptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.