Abstract
Increasing CO2 levels are speculated to change the effects of engineered nanomaterials in soil and on plant growth. How plants will respond to a combination of elevated CO2 and nanomaterials stress has rarely been investigated, and the underlying mechanism remains largely unknown. Here, we conducted a field experiment to investigate the rice (Oryza sativa L. cv. IIyou) response to TiO2 nanoparticles (nano-TiO2, 0 and 200 mg kg-1) using a free-air CO2 enrichment system with different CO2 levels (ambient ∼370 μmol mol-1 and elevated ∼570 μmol mol-1). The results showed that elevated CO2 or nano-TiO2 alone did not significantly affect rice chlorophyll content and antioxidant enzyme activities. However, in the presence of nano-TiO2, elevated CO2 significantly enhanced the rice height, shoot biomass, and panicle biomass (by 9.4%, 12.8%, and 15.8%, respectively). Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes involved in photosynthesis were up-regulated while most genes associated with secondary metabolite biosynthesis were down-regulated in combination-treated rice. This indicated that elevated CO2 and nano-TiO2 might stimulate rice growth by adjusting resource allocation between photosynthesis and metabolism. This study provides novel insights into rice responses to increasing contamination under climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.