Abstract

BackgroundThe use of heterosis to produce hybrid seeds is a challenge to breeding for improved crop yield. In previous studies, we isolated a male sterile alfalfa hybrid and successfully obtained a genetically stable alfalfa male sterile line through backcrossing, henceforth named MS-4. In this study, we used RNA-seq technology to analyze the transcriptome profiles of the male sterile line (MS-4) and the male fertile line (MF) of alfalfa to elucidate the mechanism of male sterility.ResultsWe screened a total of 11,812 differentially expressed genes (DEGs) from both MS-4 and MF lines at three different stages of anther development. Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that these DEGs are mainly involved in processes such as energy metabolism, lipid and amino acid metabolism, carbohydrate metabolism, in addition to cell synthesis and aging. The results from protein–protein interaction (PPI) network analysis showed that the ribosomal protein (MS.Gene25178) was the core gene in the network. We also found that transcriptional regulation was an influential factor in the development of anthers.ConclusionsOur findings provide new insights into understanding of the fertility changes in the male sterile (MS-4) of alfalfa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.