Abstract
Male sterile and male fertile two-type lines are important in heterosis utilization and breeding in Tagetes erecta, but the genes and pathways involved in male sterility are poorly understood. To explore these topics, transcriptome data (by RNA-seq) and proteome data (by iTRAQ) were gathered from flower buds of the male sterile line 'MS2-2' and male fertile line 'MF2-2' and integrated for a better understanding of the underlying molecular mechanisms of male sterility in T. erecta. The RNA-seq procedure generated 285,139,740 clean reads and 63359 unigenes and 6640 differentially expressed genes (DEGs) were identified, of which 4136 were downregulated and 2504 were upregulated in 'MS2-2'. DEGs related to flower development, pollen development, pollen wall assembly, endogenous hormones and transcription factors were identified. The iTRAQ analysis identified 3950 proteins in total; 789 were differentially expressed proteins (381 upregulated, 408 downregulated), which were mainly annotated to the Ribosome, Carbon metabolism and Biosynthesis of amino acids pathways. An association analysis revealed strong correlation (r Pearson = 0.6019) between the transcriptomic and proteomic data, and 256 and 34 proteins showed the same and opposite expression patterns with regard to their transcripts, respectively. Pathways such as photosynthesis, fatty acid biosynthesis and phenylpropanoid biosynthesis which influence tapetum and pollen development in male sterile plants, were significantly enriched at the transcript and protein levels. Most genes involved in these pathways were downregulated in 'MS2-2'. The low expression of these genes or functional loss of proteins could be associated with flower development, pollen development and related to changes in fertility in T. erecta. This study provided transcriptomic and proteomic information for T. erecta that could illuminate the mechanism of male sterility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.