Abstract

BackgroundDeveloping effective therapeutic strategies to delay the progression of chronic kidney disease (CKD) remains a significant challenge. Low-intensity pulsed ultrasound (LIPUS) has demonstrated potential for treating CKD, but the underlying molecular mechanisms are still elusive. This study aimed to evaluate the therapeutic efficacy of LIPUS and to elucidate the involved genes and signaling pathways. MethodsThe CKD model was established in rats using Adriamycin (ADR). The bilateral kidneys of CKD rats were continuously stimulated with LIPUS for a period of four weeks. The therapeutic efficacy was defined by renal function and histopathological evaluation. RNA sequencing was employed to profile the transcriptome of rat kidneys in each group. Cluster analysis was utilized to identify differentially expressed genes (DEGs), followed by enrichment analysis of their associated pathways using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. ResultsLIPUS treatment improved ADR-induced renal dysfunction in the CKD group. Renal fibrosis and pathological damages were also alleviated in the ADR + LIPUS group compared to the ADR group. Cluster analysis identified 844 DEGs. GO enrichment analysis revealed enrichment in inflammatory response terms, while KEGG enrichment analysis highlighted the nuclear factor kappa B (NF-κB) signaling and ferroptosis-related pathways. ConclusionContinuous LIPUS treatment improved ADR-induced renal fibrosis and dysfunction. The therapeutic effect of LIPUS was primarily due to its ability to suppress the CKD-related inflammation, which was associated with the modulation of the NF-κB and ferroptosis signaling pathways. These findings provide a new insight into the potential molecular mechanisms of LIPUS in treating CKD. Further research is necessary to confirm these findings and to identify potential therapeutic targets within these pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.