Abstract

BackgroundParasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets.ResultsAn assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25–30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development.ConclusionsIn silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari’s protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.

Highlights

  • Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions

  • To more closely examine the proteases present in Sphaerospora molnari blood stages (SMBS), we looked at enzymes that were in highly represented families, and were transcripts with a high number of reads mapping to them (TPM) or had high similarity to proteases known from other parasite species

  • Using a different comparative dataset (CEGMA, previous benchmarking metazoan dataset) Chang et al [11] noted a reduced number of core eukaryotic genes in the transcriptomes and genomes of K. iwatai (70% of CEGS, compared to our 56% of Benchmarking Universal Single Copy Orthologs (BUSCO)) and M. cerebralis (39% of CEGS compared to 55% of BUSCOs) whilst P. hydriforme consistently had more than its myxozoan relatives and was closer in numbers to the free living species (90% of CEGs and 89% of BUSCOs)

Read more

Summary

Introduction

Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Anti-parasite drugs currently available have been identified by screening sets of compounds in vitro culture systems and by borrowing compounds that have worked in other pathogens and applying those to a new parasite model [8]. This limits progress to organisms and life stages that can be isolated and cultured; secondly it relies on applicable compounds having been found in related organisms; and thirdly it limits discovery as it looks at one target at a time for feasibility. In the case of non-model organisms this is likely the first step before prioritising any protein for further experimentation with the aim of anti-parasite treatment development

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.