Abstract

The large yellow croaker (Larimichthys crocea) is one of the most important marine economic fish in the southeast coast of China. However, hypoxia stress become a major obstacle to the benign development of L. crocea industry. To understand the energy metabolism mechanism adapted to hypoxia, we analyzed the transcriptome and physiology of L. crocea liver in response to hypoxia stress for different durations. We obtained 243,756,080 clean reads, of which 83.38% were successfully mapped to the reference genome of L. crocea. The heat map analysis showed that genes encoding enzymes involved in glycolysis/gluconeogenesis were significantly upregulated at various time points. Moreover, genes encoding enzymes related to the citrate cycle, oxidative phosphorylation, and amino acid metabolism were significantly downregulated at 6 and 24h, but upregulated at 48 and 96h. The change of liver in physiology processes, including respiratory metabolism, and activities of the carbohydrate metabolism enzymes showed a similar trend. The results revealed that the respiratory metabolism of L. crocea was mainly anaerobic within 24h of hypoxia stress, and aerobic metabolism was dominant after 24h. Carbohydrate metabolism plays a crucial role in energy supply and amino acid metabolism is an important supporting character to cope with acute hypoxia stress. There was no significant change in lipid utilization under short-term acute stress. This study increases our understanding of the energy metabolism mechanism of the hypoxia response in fish and provides a useful resource for L. crocea genetics and breeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.