Abstract

Melissa officinalis (lemon balm) is a well-known pharmaceutical plant in traditional medicine around the world because of the high-value secondary metabolites. Nowadays, advances in computational biology and bioinformatics have opened new avenues to plant-based natural product drug discovery. Despite the pharmacological importance, there is low information about the genes encoding the important biosynthetic pathways related to the secondary metabolite in M. officinalis. In this study, the main genes related to the rosmarinic acid (RA) and terpenoid biosynthesis pathways were detected using transcriptome analysis. Furthermore, we isolated and characterized a novel M. officinalis Hydroxyphenylpyruvate reductase (HPPR) gene involved in RA biosynthesis pathway. An effective pipeline was used to generate 37,055 unigenes by evaluating 42,837,601 Illumina paired-end reads. Functional annotation of the unigenes revealed that 27,363 (73.84%) and 35,822 (96.67%) unigenes had significant similarity to identified proteins in the SwissProt and NR databases, respectively. Also, 10,062 (36.83%) out of 37,055 unigenes were assigned to 399 KEGG pathways. Since terpenes and RA are two prominent metabolites in this plant, the attention of this study has been on the pathways related to them. A total of 149 unigenes were found that are related to the terpenoids biosynthesis, including 75 unigenes involved in the methyl-erythritol phosphate and mevalonate pathway, terpenoid backbone biosynthesis genes, and 74 unigenes related to the terpene synthase. We also identified 144 and 30 unigenes that were associated with the biosynthesis of phenylpropanoid and the rosmarinic acid pathway. Consequently, this investigation can be a comprehensive and accurate transcriptome basis for further investigation in the metabolic engineering and detection of new genes and pathways in M. officinalis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.