Abstract

Podocytes are pivotal in establishing the selective permeability of the glomerular filtration barrier. Recently, we showed that an increase of the intracellular calcium ion concentration [Ca2+ ] causes a rapid and transient actin reset (CaAR) measurable through live imaging microscopy using lifeact-mCherry as an actin dye in different cell types including the podocyte. This and other studies show the critical role [Ca2+ ] and the actin cytoskeleton play in podocyte homeostasis. To further investigate the role of [Ca2+ ] and the actin cytoskeleton in podocytes, we used a double fluorescent reporter mouse model to establish a primary podocyte culture system. We treated these podocytes temporarily with a Calcium Ionophore and facultatively with Latrunculin A, an inhibitor of actin polymerization. Unbiased genome wide transcriptional analysis identified a transcriptional response in podocytes to elevated [Ca2+ ] levels, affecting mRNA levels of PDGF-BB, RICTOR, and MIR17HG as mediators of Ca2+ -signaling. Comparison of the ex vivo transcriptional response from the primary podocyte culture with glomerular transcripts across a wide spectrum of CKD disease confirmed co-regulation of transcript sets, establishing the disease relevance of the model system. Our findings demonstrate novel [Ca2+ ] regulated gene networks in podocytes deepening our understanding of podocyte biology and disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.