Abstract
Effective concentrations of potassium thiocyanate (KSCN) to rice seedlings were experimentally determined using relative growth rate as a sensitive endpoint. Agilent 44-K rice microarray was used to profile the molecular responses of rice seedlings exposed to thiocyanate ion (SCN-) at three different effective concentrations (EC10, EC20, and EC50). A total of 18,498 known genes were collected from SCN-treated rice microarray analysis. Out of all, 1603, 1882, and 5085 differentially expressed genes (DEGs) were observed at EC10, EC20, and EC50 concentrations, respectively. More upregulated/downregulated DEGs were detected in shoots than in roots after SCN- exposure. Gene functions and pathway enrichment analysis of DEGs indicated that different effective concentrations of SCN- resulted in multiple enriched GO categories and KEGG pathways and outcomes were quite tissue-specific. Different regulations and adaptations of gene expression in molecular function (MF), biological process (BP), and cellular components (CC) were observed in rice tissues at different effective concentrations of SCN-, suggesting their different responsive and adaptive strategies. Information collected here presents a detailed description of SCN-induced alternations of gene expression in rice seedlings and provide valuable information for further searching specific genes participating in transportation, phytotoxic responses, and detoxification of SCN- in rice seedlings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.