Abstract

Lung transplantation is the last effective treatment for end-stage respiratory failure, however, with ischemia–reperfusion injury (IRI) inevitably occurring in postoperative period. IRI is the major pathophysiologic mechanism of primary graft dysfunction, a severe complication that contributes to prolonged length of stay and overall mortality. The understanding of pathophysiology and etiology remain limited and the underlying molecular mechanism, as well as novel diagnostic biomarkers and therapeutic targets, urgently require exploration. Excessive uncontrolled inflammatory response is the core mechanism of IRI. In this research, a weighted gene co-expression network was established using the CIBERSORT and WGCNA algorithms in order to identify macrophage-related hub genes based on the data downloaded from the GEO database (GSE127003, GSE18995). 692 differentially expressed genes (DEGs) in reperfused lung allografts were identified, with three genes recognized as being related to M1 macrophages and validated as differentially expressed using GSE18995 dataset. Of these putative novel biomarker genes, TCRα subunit constant gene (TRAC) were downregulated, while Perforin-1 (PRF1) and Granzyme B (GZMB) were upregulated in reperfused vs. ischemic lung allografts. Furthermore, we obtained 189 potentially therapeutic small molecules for IRI after lung transplantation from the CMap database among which PD-98059 was the top molecule with the highest absolute correlated connectivity score (CS). Our study provides the novel insights into the impact of immune cells on the etiology of IRI and potential targets for therapeutic intervention. Nevertheless, further investigation of these key genes and therapeutic drugs is needed to validate their effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call