Abstract

BackgroundThere seems to be a close link between the changing levels of selenoproteins, which are important for maintaining redox homeostasis in the body, and acute rejection of kidney transplants. The aim of this study was to explore the diagnostic value of selenoprotein change characteristics in renal tissues for acute rejection of kidney transplantation. MethodsWe first explored the potential biological functions of 25 selenoproteins in the human body by enrichment analysis and used the HPA database to clarify the expression levels of selenoproteins in kidney tissues; We then constructed a diagnostic model using “Logistic regression analysis” and “Nomogram model”; Calibration curves and ROC curves were used to evaluate the diagnostic models, and clinical decision curves (DCA) were used to assess the diagnostic value of selenoprotein changes to the clinic; Single-gene GSEA enrichment analysis to further explore the potential regulatory mechanisms of selenoproteins; The Cibersort algorithm explores the level of immune cell infiltration and uses correlation analysis to clarify the correlation between selenoproteins and immune cells; We further assessed the diagnostic value of selenoproteins in kidney transplantation ABMR and TCMR, respectively. Finally, we validated the expression level of selenoproteins in kidney tissues by constructing a rat model of acute rejection of kidney transplantation using transcriptome sequencing. ResultsOur enrichment analysis revealed that selenoproteins are mainly closely associated with biological functions such as oxidative stress, inflammation, and immune regulation (P<0.05); The HPA database suggests that a total of 23 selenoproteins can be expressed in kidney tissue. We constructed a diagnostic model using these 23 selenoproteins, and both calibration curves and ROC curves proved that their change levels have good diagnostic value for acute rejection of kidney transplantation, and DCA curves proved the role of selenoproteins in clinical decision-making; Single-gene GSEA enrichment analysis revealed that selenoproteins are closely associated with immune regulation-related pathways (P<0.05); The Cibersort algorithm identified 10 immune cell infiltration levels that were significantly altered during acute rejection of kidney transplantation (P<0.05), while correlation analyses indicated that selenoproteins correlate with multiple immune cell infiltrations; In ABMR and TCMR, we again verified the diagnostic value of selenoprotein changes in acute rejection of kidney transplantation. Finally, we found significant differences in the expression levels of nine selenoproteins in a rat model of acute rejection of kidney transplantation (P<0.05) . ConclusionChanges in selenoproteins in renal tissues have good diagnostic value for acute rejection of kidneyl transplantation, and selenoproteins may be able to be a potential target for alleviating acute rejection of kidney transplantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call