Abstract
BackgroundCarnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology.ResultsWe constructed a normalized cDNA library and a 3’-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway.ConclusionsWe present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.
Highlights
Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence
expressed sequence tag (EST) sequencing and assembly To maximize the range of transcript diversity, we extracted and pooled RNA from vegetative tissues, flowers at various developmental stages, and ethylene-treated flowers of ‘Francesco’, a major standard-type carnation cultivar
The cDNA library was synthesized from RNA of aerial part of carnation
Summary
Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. It is one of the most important flowers in the global floriculture industry. Carnation (Dianthus caryophyllus L.) is one of the most popular cut flowers, and hundreds of cultivars are grown around the world. Several species, including Dianthus caryophyllus, D. barbatus, D. chinensis, D. plumarius, D. superbus, and their hybrids are widely used as horticultural cultivars [1]. Carnation cultivars have a wide range of colors, including red, yellow, white, green, and brown. Transgenic carnations with blue or violet flowers have been developed by the introduction of a heterologous flavonoid 3’, 5’-hydroxylase gene [10,11,12]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have