Abstract

Long-term inbreeding of sea cucumber has resulted in a decrease in its growth rate, which has severely affected yield and economic efficiency. In this study, three Apostichopus japonicus families were constructed and screened into the weight of smallest and largest, which included Russian, Chinese, and their hybrids (RC). We examined the transcriptional profiles of hybrid (RC) and purebred (CC and RR). A total of 49.69 Gb clean reads were obtained, and the Q30 base percentage was above 90.47%. A total of 5191 novel genes were discovered, of which 2592 genes were annotated. Differentially expressed genes (DEGs) were identified, and functional annotation and enrichment analysis were performed. Approximately 1874 DEGs were screened in the Chinese sea cucumber (CC) difference group; 2591 DEGs were obtained in the hybrid sea cucumber difference group (RC), and 3006 DEGs were obtained in the Russian sea cucumber difference group (RR). In Gene Ontology (GO) analysis, highest DEG enrichment was observed for the functional categories of cellular process and metabolic process. In terms of cellular components, DEG enrichment was observed in cell part, cell; for molecular function, DEG enrichment was detected in catalytic activity, binding, hydrolase activity, transferase activity. According to the differential expression analysis, we found that 15 heat shock protein (HSP) genes that have the same expression trends, which were upregulated in the smallest weight of three sea cucumber lines. In addition, COG analysis of defense genes was conducted. All defense genes (ATP-binding cassette transporters (ABCs), multidrug resistance protein (MRPs), and beta-lactamase) showed the same expression trend, which was significantly upregulated in smallest individuals compared to that of largest individuals in RC lines, which implied the smallest individuals are exposed to more pressure during growth. These results may lead to the smallest individuals showing slow growth. Additionally, we selected 12 DEGs to validate the result by qPCR. Those DEGs were included in growth-related and resistance genes. Sequencing of the A. japonicus transcriptome improves our understanding of the transcriptional regulatory apparatus that controls individual development and growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call