Abstract

The betta fish (Betta splendens), an important ornamental fish, haswell-developed and colorful fins.After fin amputation, betta fish can easily regenerate finssimilar to the originalsin terms of structureand color. The powerful fin regeneration ability and a variety of colors in the betta fish are fascinating. However, the underlying molecular mechanisms are still not fully understood. In this study, tail fin amputation and regeneration experiments were performed on two kinds of betta fish: red and white color betta fish. Then, transcriptome analyseswere conducted to screen out fin regeneration and color-relatedgenes in betta fish. Through enrichment analyses of differentially expressed genes (DEGs), we founda series of enrichment pathways and genes related to finregeneration, including cell cycle (i.e. plcg2), TGF-beta signaling pathway (i.e. bmp6), PI3K-Akt signaling pathway (i.e. loxl2aand loxl2b), Wnt signaling pathway(i.e. lef1), gap junctions (i.e. cx43), angiogenesis (i.e. foxp1), and interferon regulatory factor (i.e. irf8). Meanwhile, some fin color-related pathways and genes were identified in betta fish, especially melanogenesis (i.e. tyr, tyrp1a, tyrp1b, and mc1r) and carotenoid color genes (i.e. pax3, pax7, sox10, and ednrba). In conclusion, this studycan not only enrich the research onfish tissue regeneration, but also has a potential significance for the aquaculture and breeding of the betta fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call