Abstract

BackgroundTea (Camellia sinensis) has long been consumed worldwide for its amazing flavor and aroma. Methyl jasmonate (MeJA), which acts as an effective elicitor among the plant kingdom, could mostly improve the quality of tea aroma by promoting flavor volatiles in tea leaves. Although a variety of volatile secondary metabolites that contribute to aroma quality have been identified, our understanding of the biosynthetic pathways of these compounds has remained largely incomplete. Therefore, information aboaut the transcriptome of tea leaves and, specifically, details of any changes in gene expression in response to MeJA, is required for a better understanding of the biological mechanisms of MeJA-mediated volatiles biosynthesis. Moreover, MeJA treatment could exaggerate the responses of secondary metabolites and some gene expression which offer a better chance to figure out the mechanism.ResultsThe results of two-dimensional gas-chromatograph mass-spectrometry showed that the terpenoids content in MeJA-treated tea leaves increased, especially linalool, geraniol, and phenylethyl alcohol. More importantly, we carried out RNA-seq to identify the differentially expressed genes (DEGs) related to volatiles biosynthesis pathways induced by MeJA treatment (0 h, 12 h, 24 h and 48 h) in tea leaves. We identified 19245, 18614, 11890 DEGs respectively in the MeJA_12h, MeJA_24 h and MeJA_48 h samples. The α-Lenolenic acid degradation pathway was firstly responded resulting in activating the JA-pathway inner tea leaves, and the MEP/DOXP pathway significantly exaggerated. Notably, the expression level of jasmonate O-methyltransferase, which is associated with the central JA biosynthesis pathway, was increased by 7.52-fold in MeJA_24 h tea leaves. Moreover, the genes related to the terpenoid backbone biosynthesis pathway showed different expression patterns compared with the untreated leaves. The expression levels of 1-deoxy-D-xylulose-phosphate synthase (DXS), all-trans-nonaprenyl-diphosphate synthase, geranylgeranyl reductase, geranylgeranyl diphosphate synthase (type II), hydroxymethylglutaryl-CoA reductase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase increased by approximately 2–4-fold.ConclusionsThe results of two-dimension gas-chromatography mass-spectrometry analysis suggested that exogenous application of MeJA could induce the levels of volatile components in tea leaves, especially the geraniol, linalool and its oxides. Moreover, the transcriptome analysis showed increased expression of genes in α-Lenolenic acid degradation pathway which produced massive jasmonic acid and quickly activated holistic JA-pathway inner tea leaves, also the terpenoid backbones biosynthesis pathway was significantly affected after MeJA treatment. In general, MeJA could greatly activate secondary metabolism pathways, especially volatiles. The results will deeply increase our understanding of the volatile metabolites biosynthesis pathways of tea leaves in response to MeJA.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0609-z) contains supplementary material, which is available to authorized users.

Highlights

  • Tea (Camellia sinensis) has long been consumed worldwide for its amazing flavor and aroma

  • Most of the volatile compounds in the C6–C9 category were increased in MeJA_12h treated tea leaves than the ck_12h. 2-Hexenal is important for tea aroma, and responded indirectly to abiotic stress; according to Table 1, the 2-Hexenal content increased to 9.62 μg/g which implied massive biosynthesis of this smallmolecular-volatile metabolite after Methyl jasmonate (MeJA) treatment

  • We found most of the acid precursors, such as Salicylic acid, trans-Cinnamic acid, Homovanillic acid, trans p-Coumaric acid, the majority of which are related to volatile biosynthesis pathways, decreased in MeJA-treated 24 h tea leaves

Read more

Summary

Introduction

Tea (Camellia sinensis) has long been consumed worldwide for its amazing flavor and aroma. The major volatiles in tea leaves are mostly derived from the terpenoid pathways, such as linalool and its oxides, which account for sweet aroma in made tea; or by oxidation of fatty acids, carotenoids, and some amino acid, such as cis-3-Hexenol accounts for the fresh and fruity aroma, and coumarin accounts for the sweet camphoraceous aroma in made tea All these odor aroma constituents combine to determine the tea aroma quality. There are limited data on the specific metabolic pathways and molecular mechanisms of the biosynthesis of these odor volatiles [5,6,7,8], which hinders progress in determining the underlying mechanisms It is important in tea aroma research to identify genes involved in the aroma-related metabolic pathways

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call