Abstract

BackgroundDendrobium officinale Kimura et Migo (D. officinale) is parasitic on rocks or plants with very few mineral elements that can be absorbed directly, so its growth and development are affected by nutritional deficiencies. Previous studies found that phosphorus deficiency promotes polysaccharides accumulation in D. officinale, the expression of DoCSLA6 (glucomannan synthase gene) was positively correlated with polysaccharide synthesis. However, the molecular mechanism by which the low phosphorus environment affects polysaccharide accumulation remains unclear.ResultsWe found that DoSPX1 can reduce phosphate accumulation in plants and promote the expression of PSIs genes, thereby enhancing plant tolerance to low phosphorus environments.Y1H and EMSA experimental show that DoMYB37 can bind the promoter of DoCSLA6. DoSPX1 interact with DoMYB37 transiently overexpressed DoSPX1 and DoMYB37 in D. officinale protocorm-like bodies, decreased the Pi content, while increased the expression of DoCSLA6.ConclusionsThe signaling pathway of DoSPX1-DoMYB37-DoCSLA6 was revealed. This provides a theoretical basis for the accumulation of polysaccharide content in D. officinale under phosphorus starvation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.