Abstract
The study objective was to determine whether and to what extent sterol 27-hydroxylase, the initial step in the "acidic" pathway of bile acid biosynthesis, is regulated by bile acids. Rats were fed diets supplemented with cholestyramine (CT, 5%), cholate (CA, 1%), chenodeoxycholate (CDCA, 1%), or deoxycholate (DCA, 0.25%). When compared with paired controls, sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase specific activities increased after CT administration by 188 +/- 20% (P < 0.05) and 415 +/- 36% (P < 0.01), respectively. Similarly, mRNA levels increased by 159 +/- 14% (P < 0.05) and 311 +/- 106% (P < 0.05), respectively. Feeding CA, CDCA, or DCA decreased sterol 27-hydroxylase specific activity to 57 +/- 6, 61 +/- 8, and 74 +/- 8% of controls, respectively (P < 0.05). By comparison, the specific activity of cholesterol 7 alpha-hydroxylase decreased to 46 +/- 7 , 32 +/- 10, and 26 +/- 8% (P = 0.001). mRNA levels and transcriptional activities for sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase transcriptional activity were changed to the same extent as the specific activities after CT or bile acid feeding. We conclude that sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase are subject to negative feedback regulation by hydrophobic bile acids at the level of transcription. However, the responses of sterol 27-hydroxylase to manipulation of the bile acid pool are less prominent than those of cholesterol 7 alpha-hydroxylase. During the diurnal cycle the specific activities of sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase changed in tandem, suggesting that both may be under control of glucocorticoids.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have