Abstract

ABSTRACT Recently, biofilms, complex and dynamic structures of microorganisms, have been applied to enhanced biological phosphorus removal (EBPR), a wastewater treatment configuration dependent on cyclic shifts between anaerobic and aerobic conditions. In this study, comparative metagenomics and metatranscriptomics were performed on biofilms collected from seven sites of a moving-bed-biofilm-reactor-based EBPR process. The aim was to examine the functional ecology of phosphorus-accumulating biofilms throughout a single EBPR cycle. Taxonomic profiling revealed high microbial diversity, stable throughout the EBPR cycle. The dominant phosphorus-accumulating organisms (PAOs) were identified as Candidatus accumulibacter, Candidatus phosphoribacter, and Candidatus lutibacillus. However, these did not show the highest transcriptional activities. Propionivibrio, a potential glycogen-accumulating organism, was the most transcriptionally active. Comparative analysis of biofilms from different EBPR stages showed a progressive change in metatranscriptome composition, correlating with nutrient removal. Analysis of differentially expressed genes in abundant PAOs revealed key genes associated with the uptake of phosphorus, degradation of glycogen, biosynthesis of polyhydroxyalkanoates, and acetate production. In conclusion, this study reveals that biofilms possess the capability to adapt to environmental fluctuations primarily through alterations in microbial gene expression activity and subsequent metabolic modulation, and dominant taxa may not necessarily exhibit the highest transcriptional activity in complex microbial communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.