Abstract

Enhanced biological phosphorus removal (EBPR) activated sludge communities enriched in 'Candidatus Accumulibacter' relatives are widely used in wastewater treatment, but much remains to be learned about molecular-level controls on the EBPR process. The expression of genes found in the carbon and polyphosphate metabolic pathways in Accumulibacter was investigated using reverse transcription quantitative PCR. During a normal anaerobic/aerobic EBPR cycle, gene expression exhibited a dynamic change in response to external acetate, oxygen, phosphate concentrations and probably internal chemical pools. Anaerobic acetate addition induced expression of genes associated with the methylmalonyl-CoA pathway enabling the split mode of the tricarboxylic acid (TCA) cycle. Components of the full TCA cycle were induced after the switch to aerobic conditions. The induction of a key gene in the glyoxylate shunt pathway was observed under both anaerobic and aerobic conditions, with a higher induction by aeration. Polyphosphate kinase 1 from Accumulibacter was expressed, but did not appear to be regulated by phosphate limitation. To understand how Accumulibacter responds to disturbed electron donor and acceptor conditions, we perturbed the process by adding acetate aerobically. When high concentrations of oxygen were present simultaneously with acetate, phosphate-release was almost completely inhibited, and polyphosphate kinase 1 transcript abundance decreased. Genes associated with the methylmalonyl-CoA pathway were repressed and genes associated with the aerobic TCA cycle exhibited higher expression under this perturbation, suggesting that more acetyl-CoA was metabolized through the TCA cycle. These findings suggest that several genes involved in EBPR are tightly regulated at the transcriptional level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.