Abstract

BackgroundThe white-rot fungi in the genus Ganoderma interact with both living and dead angiosperm tree hosts. Two Ganoderma species, a North American taxon, G. zonatum and an Asian taxon, G. boninense, have primarily been found associated with live palm hosts. During the host plant colonization process, a massive transcriptional reorganization helps the fungus evade the host immune response and utilize plant cell wall polysaccharides.ResultsA publicly available transcriptome of G. boninense - oil palm interaction was surveyed to profile transcripts that were differentially expressed in planta. Ten percent of the G. boninense transcript loci had altered expression as it colonized oil palm plants one-month post inoculation. Carbohydrate active enzymes (CAZymes), particularly those with a role in lignin degradation, and auxiliary enzymes that facilitate lignin modification, like cytochrome P450s and haloacid dehalogenases, were up-regulated in planta. Several lineage specific proteins and secreted proteins that lack known functional domains were also up-regulated in planta, but their role in the interaction could not be established. A slowdown in G. boninense respiration during the interaction can be inferred from the down-regulation of proteins involved in electron transport chain and mitochondrial biogenesis. Additionally, pathogenicity related genes and chitin degradation machinery were down-regulated during the interaction indicating G. boninense may be evading detection by the host immune system.ConclusionsThis analysis offers an overview of the dynamic processes at play in G. boninense - oil palm interaction and provides a framework to investigate biology of Ganoderma fungi across plantations and landscape.

Highlights

  • The white-rot fungi in the genus Ganoderma interact with both living and dead angiosperm tree hosts

  • An average of 156 and 131 million RNAseq reads were generated from three biological replicates for the two growth conditions: (1) in vitro, i.e., G. boninense grown on artificial media, and (2) in planta, i.e., G. boninense interacting with roots of oil palm seedlings, respectively

  • Our analyses of G. boninense transcriptome as it colonizes its oil palm host revealed that genes in multiple biochemical pathways were differentially expressed early during the interaction, primarily those involved in breakdown and assimilation of metabolites and complex polysaccharides of plant origin, fungal biomass accumulation, generation of microbe-associated molecular patterns (MAMPs) and extracellular lineage-specific proteins, and cellular respiration

Read more

Summary

Introduction

The white-rot fungi in the genus Ganoderma interact with both living and dead angiosperm tree hosts. Two Ganoderma species, a North American taxon, G. zonatum and an Asian taxon, G. boninense, have primarily been found associated with live palm hosts. In North America, 13 species of Ganoderma were resolved molecularly [6], with additional species recognized in Europe and Asia [7]. Clade C contains two species, G. zonatum, native to North America and its sister species from Asia, G. boninense. Both species are found in sub-tropical and tropical regions and have been collected from the monocot plant host, palms, family Arecaceae

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call