Abstract

Ganoderma boninense is the most pathogenic fungal species for the oil palm. The molecular interactions involved in its pathogenicity remains undefined. By comparing the proteome profiles of a pathogenic and non-pathogenic species of Ganoderma, the identities of proteins essential for pathogenicity may be identified. As such we performed a shotgun proteomic analysis comparing G. boninense and G. tornatum. We were able to identify 1645 proteins, out of which 128 proteins and 187 proteins were significantly increased in abundance in G. boninense and G. tornatum, respectively, under carbon and nitrogen starvation with and without the presence of the oil palm sawdust (conditions that mimicked field conditions). A bioinformatics analysis of these proteins suggested that during carbon and nitrogen starvation, groups of proteins related to catalytic activity, binding, cellular anatomical entity, metabolic process and cellular process underwent extensive alterations in both Ganoderma species. In addition, exposure to carbon and nitrogen starvation with the presence of the oil palm sawdust, induced different groups of proteins in G. boninense and G. tornatum that may be linked to the different level of pathogenicity between both Ganoderma species in oil palm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.