Abstract

Osteoprotegerin (OPG), an osteoblast-secreted decoy receptor, specifically binds to osteoclast differentiation factor and inhibits osteoclast maturation. Members of the transforming growth factor-beta superfamily including bone morphogenetic proteins (BMPs) stimulate OPG mRNA expression. In this study, we have characterized the transcription mechanism of BMP-induced OPG gene expression. Transfection of Smad1 and a constitutively active BMP type IA receptor ALK3 (Q233) stimulated the OPG promoter. Deletion analysis of the OPG promoter identified two Hoxc-8 binding sites that respond to BMP stimulation. Glutathione S-transferase-Hoxc-8 protein binds to these two Hox sites specifically. Consistent with the transfection results of the native promoter, ALK3 or Smad1 linker region, which interacts with Hoxc-8, stimulated the activation of the reporter construct with the two Hox sites. Overexpression of Hoxc-8 inhibited the induced promoter activity. When the two Hox binding sites were mutated, ALK3 or Smad1 linker region no longer activated the transcription. Importantly, Smad1 linker region induced both OPG promoter activity and endogenous OPG protein expression in 2T3 osteoblastic cells. The medium from cells transfected with Smad1 linker region expression plasmid effectively inhibited osteoclastogenesis. Collectively, our data indicate that Hox sites mediate both OPG promoter construct activity and endogenous OPG gene expression in response to BMP stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.