Abstract

Although the past two decades have witnessed a significant increase in the number of studies investigating effects of estrogenic chemicals on amphibians, to date little is known about specific molecular interactions of estrogens with the hypothalamus-pituitary-gonadal-hepatic axis in developing amphibians. Here, tissue-specific functional sets of genes, derived previously from studies of fishes exposed to endocrine active chemicals, were evaluated in Xenopus laevis exposed to 17α-ethynylestradiol (EE2) throughout their early development. Specifically, transcriptional responses of X. laevis exposed to 0.09, 0.84, or 8.81µg EE2/L were characterized during sexual differentiation [31day post hatch (dph)] and after completion of metamorphosis during the juvenile stage (89dph). While at 31dph there were no consistent effects of EE2 on abundances of transcripts,at 89dph X. laevis exhibited significant alterations in expression of genes involved in steroid signaling and metabolism, synthesis of cholesterol, and vitellogenesis. Specifically, expression of androgen receptor, farnesyl diphosphate synthase, estrogen receptor α, and vitellogenin A2 was significantly greater (>2-fold) than in controls while expression of farnesoid x-activated receptors α and β was significantly less (>2-fold reduction) than in controls. These results support the hypothesis that sets of genes derived from studies in teleost fish can be extrapolated for use in amphibians during the juvenile stage but not in sexually undifferentiated individuals. Furthermore, changes in abundances of transcripts of the here utilized sets of genes in animals sampled post sexual differentiation were in accordance with developmental effects and alterations of gonadal histology reported in a parallel study. This set of genes might be useful for predicting potential adverse outcomes at later life-stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.