Abstract

Inorganic arsenic (iAs), which predominantly occurs as arsenite (As3+) and arsenate (As5+) in natural water, is primarily accumulated by seaweed in marine environments. However, the detailed mechanisms through which As3+ and As5+ affect the physiological processes of these organisms remain largely unknown. This study focused on evaluating the toxicological effects of As3+ and As5+ on the seaweed Sarcodia suae. Exposure to As3+ and As5+ resulted in IC50 values of 401.5 ± 9.4 μg L-1 and 975.8 ± 13 μg L-1, respectively. Morphological alterations and a reduction in phycoerythrin content were observed, particularly under As3+ exposure, with increased lipid peroxidation as evidenced by higher malondialdehyde levels. Exposure to As3+ also elevated the production of superoxide radicals, while decreasing hydrogen peroxide levels specifically in the presence of As3+. The induction of antioxidative enzyme activities, namely superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase was observed, signaling an adaptive response to iAs-induced oxidative stress. Moreover, levels of the antioxidants ascorbate and glutathione were elevated post-exposure, especially in response to As3+. Additionally, bioaccumulation of arsenic was significantly higher in the As3+ compared to As5+. Collectively, the data suggest that As3+ imposes greater adverse effects and oxidative stress to S. suae, which responds by adjusting its antioxidative defense mechanisms to mitigate oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.