Abstract
The yeast transcriptional regulator protein GCN4 harbors the bZIP DNA binding motif, which is common to a family of DNA-binding proteins in eukaryotic organisms from yeast to man. GCN4 and the mammalian activator protein AP-1 (jun/fos) regulate transcription by binding the same consensus DNA sequence ATGA (C/G)TCAT. GCN4 positively regulates the production of precursors of protein synthesis in yeast cells in response to the environmental signal "amino acid starvation." We find three GCN4 responsive elements (GCREs) in the 5'-flanking region of the purine biosynthetic gene ADE4 and demonstrate that GCN4 efficiently activates transcription of ADE4. Two GCREs are essential to synergistically activate ADE4 transcription by binding GCN4. The distal GCRE1 is also required for basal transcription of ADE4. Therefore, transcription factor GCN4 affects, in addition to protein biosynthesis, also nucleotide biosynthesis and, comparable to its mammalian counterpart AP-1, has a more general function within the yeast cell than previously assumed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have