Abstract

The biological effects of the cellular c-Myb and the viral v-Myb proteins are strikingly different. While c-Myb is indispensable for normal hematopoiesis, v-Myb induces acute leukemia. The v-Myb DNA-binding domain (DBD) differs from that of c-Myb mainly by deletion of the first of three repeats which correlates with efficient oncogenic transformation and a decrease in DNA-binding activity. To investigate the difference in DNA-binding and transcriptional activation, oligonucleotide selection and electrophoretic mobility shift assays were employed. The v-Myb DBD (R2R3) shows an intrinsic DNA-binding specificity for an AT-rich downstream extension of the Myb recognition element (MRE) PyAAC T/ GG for efficient binding to this site, whereas R1 within the c-Myb DBD allows for more flexibility for this downstream extension. Therefore, due to the presence of repeat R1, c-Myb can bind to a greater number of target sites. The intrinsic DNA-binding specificity of R2R3 is further supported with the results from in vivo transcriptional activation experiments which demonstrated that both the v-Myb and c-Myb DBDs require an extension of the MRE (motif #1) by a downstream T-stretch (motif #2) for full activity. Surprisingly, the T-stretch improves binding when present on either strand, but is required on a specific strand for transcriptional activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.